[1] Liu, X., Liu, W., Tang, Q., Liu, B., Wada, Y., & Yang, H. (2022). Global agricultural water scarcity assessment incorporating blue and green water availability under future climate change. Earth’s Future, 10(4), e2021EF002567. https://doi.org/10.1029/2021EF002567
[2] World Health Organization. (2017). Progress on drinking water, sanitation, and hygiene: 2017 update and SDG baselines. https://coilink.org/20.500.12592/9pbsf4
[3] Boano, F., Caruso, A., Costamagna, E., Ridolfi, L., Fiore, S., Demichelis, F., Galvão, A., Pisoeiro, J., Anacleto, R., & Masi, F. (2020). A review of nature-based solutions for greywater treatment: Applications, hydraulic design, and environmental benefits. Science of the total environment, 711, 134731.
https://doi.org/10.1016/j.scitotenv.2019.134731
[4] Ludwig, A. (2012). Create an oasis with greywater: choosing, building, and using Greywater Systems, includes branched drains (No. 628.3623 L948 2012). Oasis Design.
[5] Li, K., Ren, W., Wang, Q., Xu, L., Shi, X., Bai, X., Jin, X., Wang, X. C., & Jin, P. (2023). Onsite treatment of decentralized rural greywater by ecological seepage well (ESW). Journal of Cleaner Production, 393, 136180. https://doi.org/10.1016/j.jclepro.2023.136180
[6] Li, F., Wichmann, K., & Otterpohl, R. (2009). Review of the technological approaches for grey water treatment and reuse. Science of the total environment, 407(11), 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004
[7] Yin, L., Tao, F., Chen, Y., & Wang, Y. (2022). Reducing agriculture irrigation water consumption through reshaping cropping systems across China. Agricultural and Forest Meteorology, 312, 108707. https://doi.org/10.1016/j.agrformet.2021.108707
[8] Finley, S., Barrington, S., & Lyew, D. (2009). Reuse of domestic greywater for the irrigation of food crops. Water, air, and soil pollution, 199, 235-245. https://doi.org/10.1007/s11270-008-9874-x
[9] Jackson, S., Rodda, N., & Salukazana, L. (2006). Microbiological assessment of food crops irrigated with domestic greywater. Water S.A, 32(5), 700–704. https://doi.org/10.4314/wsa.v32i5.47856
[10] Joz Ghasemi. A., Rostamkhani, D., & Norouzi, M. (2016). Study of greywater and its agricultural consumption reuse plan, science and engineering congress of Water and Wastewater Co., Iran, Tehran (in Persian). https://civilica.com/doc/600222
[11] Rastogi, R. (2019). Water Purification Using Different Chemical Treatment. In Handbook of Research on the Adverse Effects of Pesticide Pollution in Aquatic Ecosystems (pp. 338-367). IGI Global. https://doi.org/10.4018/978-1-5225-6111-8.ch019
[12] Mandal, D., Dhone, S. and Shankar, D. (2011). Water conservation due to greywater treatment and reuse in urban. Resources, Conservation and Recycling 55, pp 356-361.https://doi.org/10.1016/j.resconrec.2010.11.001
[13] Rao, H., Rao, L., Haridas, H., Manju, D.K., Swetha, S., Chanakya, H. (2020). Design and Characterization of Cold Plasma Ozonator for Wastewater Treatment. In: Ghosh, S., Saha, P., Francesco Di, M. (eds) Recent Trends in Waste Water Treatment and Water Resource Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-0706-9_16
[14] Khan, Z. M., Kanwar, R. M. A., Ameean, A., Khalid, A., Rasool, S., & Raza, H. (2022). Greywater Characterization and Treatment Using Chemical Coagulation. Journal of Quality Assurance in Agricultural Sciences, 2(01), 46-52. https://doi.org/10.38211/jqaas.2022.2.1.7
[15] El Qrenawi, E. M., Ibrahim, E. N., Al-Agha, M. R., & El-Nahhal, Y. (2022). Rapid Method for Greywater Treatment and Their Potential Reuse in Agriculture. American Journal of Analytical Chemistry, 13(2), 20-38. https://doi.org/10.4236/ajac.2022.132003
[16] Dhiman, S., & Sharma, A. (2022). Secondary Clarification of Wastewater Relying on Biological Treatment Processes: Advancements and drawbacks. In Wastewater Treatment (pp. 157-168). CRC Press. https://doi.org/10.1201/9781003165057-13
[17] Chen, X. J., Wu, Y. H., Young, S., Huang, W. W., Palmarin, M. J., & Yao, Y. (2020). Biological Treatment for Greywater Reclamation. Journal of Environmental Informatics Letters, 3(1), 18-28. https://doi.org/10.3808/jeil.202000027
[18] Hussain, A., Kumari, R., Sachan, S. G., & Sachan, A. (2021). Biological wastewater treatment technology: Advancement and drawbacks. In Microbial Ecology of Wastewater Treatment Plants (pp. 175-192). Elsevier. https://doi.org/10.1016/B978-0-12-822503-5.00002-3
[19] Mahanta, S., Habib, M. R., & Moore, J. M. (2022). Effect of high-voltage atmospheric cold plasma treatment on germination and heavy metal uptake by soybeans (Glycine max). International Journal of Molecular Sciences, 23(3), 1611. https://doi.org/10.3390/ijms23031611
[20] Maybin, J. A., McClenaghan, L. A., Gilmore, B. F., & Thompson, T. P. (2024). Cold plasma for enhanced water purification. Sustainable Microbiology, 1(1), qvae032. https://doi.org/10.1093/sumbio/qvae032
[21] Tang, X., Júnior, A. D. F., Karu, K., Campos, L. C., & Kim, M. (2024). Atmospheric pressure dielectric barrier discharge plasma for in-situ water treatment using a bubbling reactor. Journal of Environmental Management, 370, 122574. https://doi.org/10.1016/j.jenvman.2024.122574
[22] Hamza, I. A., El-Kalliny, A. S., Abd-Elmaksoud, S., Marouf, M. A., Abdel-Wahed, M. S., El-Liethy, M. A., & Hefny, M. M. (2023). Cold atmospheric plasma: a sustainable approach to inactivating viruses, bacteria, and protozoa with remediation of organic pollutants in river water and wastewater. Environmental Science and Pollution Research, 30(54), 116214-116226. https://doi.org/10.1007/s11356-023-30298-x
[23] Saedi, Z., Kuddushi, M., Gao, Y., Panchal, D., Zeng, B., Pour, S. E., Shi, H., & Zhang, X. (2024). Stable and efficient microbubble-enhanced cold plasma activation for treatment of flowing water. Sustainable Materials and Technologies, 40, e00887. https://doi.org/10.1016/j.susmat.2024.e00887
[24] Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G., & Vasiliadis, L. (2023). A review of hydroponics and conventional agriculture based on energy and water consumption, environmental impact, and land use. Energies, 16(4), 1690. https://doi.org/10.3390/en16041690
[25] Siegrist, R. L. (1977). Waste segregation to facilitate onsite wastewater disposal alternatives. University of Wisconsin, Madison. https://soilsfacstaff.cals.wisc.edu/sswmp/pubs/2.20.pdf
[26] Spychała, M., Nieć, J., Zawadzki, P., Matz, R., & Nguyen, T. H. (2019). Removal of volatile solids from greywater using sand filters. Applied Sciences, 9(4), 770. https://doi.org/10.3390/app9040770
[27] Traylor, M. J., Pavlovich, M. J., Karim, S., Hait, P., Sakiyama, Y., Clark, D. S., & Graves, D. B. (2011). Longterm antibacterial efficacy of air plasma-activated water. Journal of Physics D: Applied Physics, 44(47), 472001. https://doi.org/10.1088/0022-3727/44/47/472001
[28] Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371. http://doi.org/10.5958/2455-7145.2018.00056.5
[29] Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443-1467. https://doi.org/10.1016/S0043-1354(02)00457-8
[30] Carotti, L., Graamans, L., Puksic, F., Butturini, M., Meinen, E., Heuvelink, E., & Stanghellini, C. (2021). Plant factories are heating up: Hunting for the best combination of light intensity, air temperature, and root-zone temperature in lettuce production. Frontiers in Plant Science, 11, 592171. https://doi.org/10.3389/fpls.2020.592171
[31] Ghaly, A. E., Mahmoud, N. S., Ibrahim, M. M., Mostafa, E. A., Abdelrahman, E. N., Emam, R. H., MA, Kassem & MH, Hatem. (2021). Greywater Sources, Characteristics, Utilization and Management Guidelines. Adn Envi Was Mana Rec, 4 (2), 128-145. https://dx.doi.org/10.33140/AEWMR
[32] Raposo, F., De la Rubia, M. A., Borja, R., & Alaiz, M. (2008). Assessment of a modified and optimized method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta, 76(2), 448-453. https://doi.org/10.1016/j.talanta.2008.03.030
[33] Setyawan, T. A., Riwinanto, S. A., Nursyahid, A., & Nugroho, A. S. (2018, September). Comparison of hsv and lab color spaces for hydroponic monitoring system. In 2018 5th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE) (pp. 347-352). IEEE. https://doi.org/10.1109/ICITACEE.2018.8576956
[34] Costello, F., & Watts, P. (2020). Distributional Null Hypothesis Testing with the T distribution. arXiv preprint arXiv:2010.07813. https://doi.org/10.48550/arXiv.2010.07813
[35] Susanti, H., & Purwanto, R. (2023). Development of a hydroponic system using an Atmega 2560 Microcontroller with Automatic Nutrition and pH Settings for Lettuce Cultivation. Jurnal E-Komtek (Elektro-KomputerTeknik), 7(1), 1-12. https://doi.org/10.37339/e-komtek.v7i1.1170
[36] Mohamed, S., & Abdalla, A. S. (2013). Growth and yield response of groundnut (Arachis hypogaea L.) to microbial and phosphorus fertilizers. J. Agri-Food Appl. Sci, 1, 78-85. http://dx.doi.org/10.4314/naj.v40i1-2.55549
[37] Eriksson, E., Auffarth, K., Henze, M., & Ledin, A. (2002). Characteristics of grey wastewater. Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
[38] Pichara Morais, J., Kido, H. W., Tim, C., Martins de Andrade, A. L., Santi Martignago, C. C., Renno, A., Cogo, J., Amaral, M. M., Marcos, R. L., Bezerra Santanaa, V., Baptista, A., dos Santos Batista Bittencourt, E., & Assis, L. (2024). In Vitro Investigation of the Antimicrobial Potential and Cell Viability of Different Dosages of Ozone Therapy. Ozone: Science & Engineering, 47(1), 64-75. https://doi.org/10.1080/01919512.2024.2336977
[39] Fountoulakis, M. S., Markakis, N., Petousi, I., & Manios, T. (2016). Single house on-site greywater treatment using a submerged membrane bioreactor for toilet flushing. Science of The Total Environment, 551-552, 706-711. https://doi.org/10.1016/j.scitotenv.2016.02.057
[40] Estrada, Alex; Fairchok, Katya; Feldmeth, Andrew; and Jezak, Andrew, “Design of a Greywater-Fed Hydroponics System” (2020). Interdisciplinary Design Senior Theses. 62. https://scholarcommons.scu.edu/idp_senior/62
[41] Sharvelle, S., Azar, M. N., Stromberger, M., & Roesner, L. (2010). Effect of Graywater Application for Landscape Irrigation on Soil Quality. In WEFTEC 2010 (pp. 3782- 3791). Water Environment Federation. https://doi.org/10.2175/193864710798182169
[42] Domingues, D. S., Takahashi, H. W., Camara, C. A., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and electronics in agriculture, 84, 53-61. https://doi.org/10.1016/j.compag.2012.02.006
[43] Miller, A., Langenhoven, P., & Nemali, K. (2020). Maximizing the productivity of greenhouse-grown hydroponic lettuce during winter. HortScience, 55(12), 1963-1969.https://doi.org/10.21273/HORTSCI15351-20
[44] Xie, S., Pedrow, P. D., & Englund, K. R. (2020). Cold Plasma Processing of Biochar Using Corona Discharge in Atmospheric Pressure Dry Air and Helium. IEEE Transactions on Plasma Science, 48(7), 2457-2463. https://doi.org/10.1109/TPS.2020.2998436
[45] Gururani, P., Bhatnagar, P., Bisht, B., Kumar, V., Joshi, N. C., Tomar, M. S., & Pathak, B. (2021). Cold plasma technology: advanced and sustainable approach for wastewater treatment. Environmental Science and Pollution Research, 28, 65062–65082. https://doi.org/10.1007/s11356-021-16741-x
[46] Jesse, SD, Zhang, Y, Margenot, & AJ, Davidson PC. (2019). Hydroponic Lettuce Production Using Treated Post-Hydrothermal Liquefaction Wastewater (PHW). Sustainability. 11(13): 3605. https://doi.org/10.3390/su11133605
[47] Nguyen, D. V., Ho, P. Q., Pham, T. V., Nguyen, T. V., & Kim, L. (2019). Treatment of surface water using cold plasma for domestic water supply. Environmental Engineering Research, 24(3), 412-417. https://doi.org/10.4491/eer.2018.215
[48] March, J.G., Gual, M., & Orozco, F. (2004). Experiences on greywater reuse for toilet flushing in a hotel (Mallorca Island, Spain). Desalination, 164 (3) . 241-247. https://doi.org/10.1016/S0011-9164(04)00192-4
[49] Sostar-Turk, S., Petrinic, I., & Simonic, M. (2005). Laundry wastewater treatment using coagulation and membrane filtration. Resour Conserv Recycl, 44 (2) . 185-196. https://doi.org/10.1016/j.resconrec.2004.11.002
[50] Lin, C. J., Lo, S. L., Kuo, C. Y., & Wu, C. H. (2005). Pilot-scale electrocoagulation with bipolar aluminum electrodes for on-site domestic greywater reuse. Journal of Environmental Engineering, 131(3), 491-495. https://doi.org/10.1061/(ASCE)0733-9372
[51] Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons S.A., Liu S., Memon, F.A., & Bruce Jefferson, B. (2008). Chemical solutions for greywater recycling. Chemosphere, 71(1), 147-155. https://doi.org/10.1016/j.chemosphere.2007.10.046
[52] Elmitwalli, T.A., Shalabi, M., Wendland, C., & Otterpohl, R. (2007). Grey water treatment in UASB reactor at ambient temperature. Water Sci Technol, 55(7) (2007), pp. 173-180 https://doi.org/10.2166/wst.2007.142
[53] Leal, L. H., Temmink, H., Zeeman, G., & Buisman, C. J. (2010). Comparison of three systems for biological greywater treatment. Water, 2(2), 155-169. https://doi.org/10.3390/w2020155
[54] Abbadi, N. K. E., & Razaq, E. S. (2020). Automatic gray image colorization based on lab color space. Indonesian Journal of Electrical Engineering and Computer Science, 18(3), 1501-1509. https://doi.org/10.11591/ijeecs.v18.i3.pp1501-1509
[55] Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., & Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on the quality of fruits, vegetables, and aromatic herbs. Foods, 9(9), 1261. https://doi.org/10.3390/foods9091261
[56] Punith, N., Harsha, R., Lakshminarayana, R., Hemanth, M., S Anand, M., & Dasappa, S. (2019). Plasma-activated water generation and its application in agriculture. Advanced Materials Letters, 10(10), 700-704. https://doi.org/10.5185/amlett.2019.0042