[1] Anonymous (2017). Food and agricultural organization of the United Nations statistics division. Available from: http://FAOst at3.fao.org/downl oad/Q/QC/E
[2] Azlin-Hasim, S., Cruz-Romero, M. C., Ghoshal, T., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Application of silver nanodots for potential use in antimicrobial packaging applications. Innovative Food Science & Emerging Technologies, 27, 136-143. https://doi.org/https://doi.org/10.1016/j.ifset.2014.10.012
[3] Azlin-Hasim, S., Cruz-Romero, M. C., Morris, M. A., Cummins, E., & Kerry, J. P. (2015). Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4, 26-35. https:// doi.org/https://doi.org/10.1016/j.fpsl.2015.03.003
[4] Brannan, R. G. (2009). Effect of grape seed extract on descriptive sensory analysis of ground chicken during refrigerated storage. Meat Science, 81(4), 589-595. https://doi.org/https://doi.org/10.1016/j.meatsci.2008.10.014
[5] Busolo, M. A., Fernandez, P., Ocio, M. J. & Lagaron, J. M. (2010). Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food additives and contaminants Part A, Chemistry, analysis, control, exposure & risk assessment; 27(11), 161726. https://doi.org/ 10.1080/19440049.2010.506601
[6] Carlson, C., Hussain, S. M., Schrand, A. M., K. BraydichStolle, L., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry B, 112(43), 13608-13619. https://doi.org/10.1021/jp712087m
[7] Cheng, H., Xu, H., Julian McClements, D., Chen, L., Jiao, A., Tian, Y., Miao, M., & Jin, Z. (2022). Recent advances in intelligent food packaging materials: Principles, preparation and applications. Food Chemistry, 375, 131738. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.131738
[8] Gholami, R., Ahmadi, E., & Ahmadi, S. (2020). Investigating the effect of chitosan, nanopackaging, and modified atmosphere packaging on physical, chemical, and mechanical properties of button mushroom during storage [https://doi.org/10.1002/fsn3.1294]. Food Science & Nutrition, 8(1), 224-236. https://doi.org/https://doi.org/10.1002/fsn3.1294
[9] Gholami, R., Ahmadi, E., & Farris, S. (2017). Shelf life extension of white mushrooms (Agaricus bisporus) by low temperatures conditioning, modified atmosphere, and nanocomposite packaging material. Food Packaging and Shelf Life, 14, 88-95. https://doi.org/https://doi.org/10.1016/j.fpsl.2017.09.001
[10] Haghighi, H., Licciardello, F., Fava, P., Siesler, H. W., & Pulvirenti, A. (2020). Recent advances on chitosanbased films for sustainable food packaging applications. Food Packaging and Shelf Life, 26, 100551. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100551
[11] Huang, Q., Qian, X., Jiang, T., & Zheng, X. (2019). Effect of chitosan and guar gum based composite edible coating on quality of mushroom (Lentinus edodes) during postharvest storage. Scientia Horticulturae, 253, 382-389. https://doi.org/https://doi.org/10.1016/j.scienta.2019.04.062
[12] Huang, E & Chen, Y. (2012). Determination of the migration of seven photoinitiators in food packaging materials into aqueous solvent. Chinese journal of chromatography, Zhongguo hua xue hui, 30(12), 1235-40. https://doi.org/https://doi.org/10.3724/SP.J.1123.2012.09001
[13] Jiang, T. (2013). Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biology and Technology 76, 91–97. https://doi.org/10.1016/j.postharvbio.2012.09.005
[14] Jiang, T., Feng, L. & Wang, Y. (2013). Effect of alginate/ nano-Ag coating on microbial and physicochemical characteristics of shiitake mushroom (Lentinus edodes) during cold storage. Food Chemistry. 141, 954-960. https://doi.org/10.1016/j.foodchem.2013.03.093
[15] Joerger, R. D. (2007). Antimicrobial films for food applications: a quantitative analysis of their effectiveness. Packaging Technology and Science, 20(4), 231-273. https://doi.org/https://doi.org/10.1002/pts.774
[16] Jogaiah, S., Mujtaba, A. G., Mujtaba, M., Archana, De Britto, S., Geetha, N., Belorkar, S. A., & Shetty, H. S. (2025). Chitosan-metal and metal oxide nanocomposites for active and intelligent food packaging; a comprehensive review of emerging trends and associated challenges. Carbohydrate Polymers, 357, 123459. https://doi.org/https://doi.org/10.1016/j.carbpol.2025.123459
[17] Keshavars, A., Shariatmadar, M. H., Khosravi, A., MehrAbadi, A. A. & Fakari, B. (2016). Estimating the economic value of water lost due to agricultural product waste. Journal of Water and Sustainable Development. Issue 1. pp. 73-82. In Farsi.
[18] Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113-130. https://doi.org/https://doi.org/10.1016/j.meatsci.2006.04.024
[19] Kim, K. M., Ko, J. A., Lee, J. S., Park, H. J., & Hanna, M. A. (2006). Effect of modified atmosphere packaging on the shelf-life of coated, whole and sliced mushrooms. LWT - Food Science and Technology, 39(4), 365-372. https://doi.org/https://doi.org/10.1016/j.lwt.2005.02.015
[20] Li, H., Li, F., Wang, L., Sheng, J., Xin, Z., Zhao, L., Xiao, H., Zheng, Y., & Hu, Q. (2009). Effect of nanopacking on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chemistry, 114(2), 547-552. https://doi.org/https://doi.org/10.1016/j.foodchem.2008.09.085
[21] Lin, Q., Lu, Y., Zhang, J., Liu, W., Guan, W. & Wang, Z. (2017). Effects of high CO2 in package treatment on flavor, quality and antioxidant activity of button mushroom (Agaricus bisporus) during postharvest storage. Postharvest Biology and Technology,123, 112-118. https://doi.org/10.1016/j.postharvbio.2016.09.006
[22] Rahmati-Joneidabad, M., Zare Bavani, M. R., Alizadeh Behbahani, B., & Taki, M. (2025). Probioticinfused active packaging: preparation, characterization, application, and modeling the preservation of fresh strawberry fruit. LWT, 220, 117586. https://doi.org/https://doi.org/10.1016/j.lwt.2025.117586
[23] Sandhya, (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Science and Technology, 43(3), 381-392. https://doi.org/https://doi.org/10.1016/j.lwt.2009.05.018
[24] Shahidi, F., & Abuzaytoun, R. (2005). Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nutr Res, 49, 93-135. https://doi.org/10.1016/s1043-4526(05)49003-8
[25] Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y., & Li, W. (2013). Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118(1), 125-131. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2013.03.029
[26] Silveira, M. F. A., Soares, N. F. F., Geraldine, R. M., Andrade, N. J., Botrel, D. A., & Gonçalves, M. P. J. (2007). Active film incorporated with sorbic acid on pastry dough conservation. Food Control, 18(9), 1063-1067. https://doi.org/https://doi.org/10.1016/j.foodcont.2006.07.004
[27] Strachowski, P., Mandava, G., Lundqvist, J., Bordes, R., & Abdollahi, M. (2025). Development of mesoporous silica-based active coatings for methylmercury removal: Towards enhanced active packaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 704, 135562. https://doi.org/https://doi.org/10.1016/j.colsurfa.2024.135562
[28] Tornuk, F., Hancer, M., Sagdic, O., & Yetim, H. (2015). LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT - Food Science and Technology, 64(2), 540-546. https://doi.org/https://doi.org/10.1016/j.lwt.2015.06.030
[29] Uba, F., Esandoh, E. O., Zogho, D., & Anokye, E. G. (2020). Physical and mechanical properties of locally cultivated tomatoes in Sunyani, Ghana. Scientific African, 10, e00616. https://doi.org/https://doi.org/10.1016/j.sciaf.2020.e00616
[30] Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42(7), 762-769. https://doi.org/https://doi.org/10.1016/j.foodres.2009.02.026