[1] Lagnelöv, O., Dhillon, S., Larsson, G., Nilsson, D., Larsolle, A., & Hansson, P. A. (2021). Cost analysis of autonomous battery electric field tractors in agriculture. Biosystems Engineering, 204(1), 358-376.
[2] Bagheri, E., & Khodkam, H. (2025). Smart Farming: How Drones Are Transforming the Future of Food Production?.
Biosystems Engineering & Sustainable Technologies (BEST), 1(1), 45-61.
https://doi.org/10.22084/best.2025.30490.1004
[3] Beltrami, D., Iora, P., Tribioli, L., & Uberti, S. (2021). Electrification of compact off-highway vehicles— overview of the current state of the art and trends. Energies, 14(17), 5565. https://doi.org/10.3390/en14175565
[4] Dasch, J. M., & Gorish, D. J. (2013). The TARDEC story: Sixty-five years of innovation 1946-2010. Government Printing Office.
[5] Elahi, E., Khalid, Z., & Zhang, Z. (2022). Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture.
Applied Energy, 309(1), 118459.
https://doi.org/10.1016/j.apenergy.2021.118459
[7] Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., & Tempio, G. (2013). Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities (pp. xxi+-115).
http://www.fao.org/docrep/018/i3437e/i3437e00.htm
[8] Gorjian, S., Ebadi, H., Trommsdorff, M., Sharon, H., Demant, M., & Schindele, S. (2021). The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations.
Journal of Cleaner Production, 292(1), 126030.
https://doi.org/10.1016/j.jclepro.2021.126030
[9] Graczyk, A. (2017). Wskaźniki zrównoważonego rozwoju energetyki.
Optimum. Economic Studies, 88(4), 53-68.
[10] Hadryjańska, B. (2021). Droga do zrównoważonego rozwoju w Polsce w świetle założeń Agendy 2030. Difin. [11] Hernández-Escobedo, Q., Muñoz-Rodríguez, D., Vargas-Casillas, A., Juárez López, J. M., AparicioMartínez, P., Martínez-Jiménez, M. P., & Perea-Moreno, A. J. (2022). Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years.
Energies, 16(1), 345.
https://doi.org/10.3390/en16010345
[12] Holtz, D., Singh, A., & Megiveron, M. G. (2014, August). Tire-Soil Modeling for Vehicle Rollover Over Sloped Compressible Terrains.
In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 46346, p. V003T01A029). American Society of Mechanical Engineers.
https://doi.org/10.1115/DETC2014-35662
[13] Janosi, Z. (1961). The analytical determination of drawbar pull as a function of slip for tracked vehicles in deformable soils.
In International Society for TerrainVehicle Systems, 1st Int. Conf. (Vol. 707).
https://doi.org/10.13031/epam.2013
[15] Kheiralipour, K., Khoobbakht, M., & Karimi, M. (2024). Effect of biodiesel on the environmental impacts of diesel mechanical power generation by life cycle assessment.
Energy, 289(129948).
https://doi.org/10.1016/j.energy.2023.129948
[16] Khodkam H. (2025). A review of the effective factors involved in the production of biogas from biomass waste.
Biosystems Engineering and Renewable Energies, 1(1), 203-213, 51-58.
https://doi.org/10.22069/bere.2025.23043.1011
[17] Khodkam, H. (2024). The best approach to build a solar power plant to increase efficiency and location in several climatic climates of Iran using AHP software. Journal of Renewable and New Energy, 11(1), 148-157. 10.22034/jrenew 2023.185722
[18] Khodkam, H., Pourdarbani, R., Ghaebi, H., & Hernandez-Hernandez, M. (2024). Investigating the Environmental Impacts of Different Approaches of Agricultural Waste Management Using AHP Technique. Acta Technologica Agriculturae, 27(4), 242-250. DOI: 10.2478/ata-2024-0032
[19] Kivekäs, K., Lajunen, A., Baldi, F., Vepsäläinen, J., & Tammi, K. (2019). Reducing the energy consumption of electric buses with design choices and predictive driving. IEEE Transactions on Vehicular Technology, 68(12), 11409-11419.10.1109 /TVT.2019.2936772
[20] Krenn, R., & Gibbesch, A. (2011). Soft soil contact modeling technique for multi-body system simulation. Trends in computational contact mechanics, 1(1), 135-155.
[21] Lagnelöv, O., Larsson, G., Larsolle, A., & Hansson, P. A. (2021). Life cycle assessment of autonomous electric field tractors in Swedish agriculture.
Sustainability, 13(20), 11285.
https://doi.org/10.3390/su132011285
[23] Lajunen, A. (2022). Simulation of energy efficiency and performance of electrified powertrains in agricultural tractors. IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-6). IEEE.10.1109/VPPC55846.2022.10003394
[24] Lajunen, A., Kivekäs, K., Freyermuth, V., Vijayagopal, R., & Kim, N. (2023, June). Simulation of alternative powertrains in agricultural tractors. In Proceedings of the 36th International Electric Vehicle Symposium and Exhibition (EVS36), Sacramento, CA, USA. (pp. 11-14).
[27] Olkkonen, V., Lind, A., Rosenberg, E., & Kvalbein, L. (2023). Electrification of the agricultural sector in Norway in an effort to phase out fossil fuel consumption.
Energy, 276(1), 127543.
https://doi.org/10.1016/j.energy.2023.127543
[28] Ragazou, K., Garefalakis, A., Zafeiriou, E., & Passas, I. (2022). Agriculture 5.0: A new strategic management mode for a cut cost and an energy-efficient agriculture sector.
Energies, 15(9), 3113.
https://doi.org/10.3390/en15093113
[29] Recuero, A., Serban, R., Peterson, B., Sugiyama, H., Jayakumar, P., & Negrut, D. (2017). A high-fidelity approach for vehicle mobility simulation: Nonlinear finite element tires operating on granular material.
Journal of Terramechanics, 72(1), 39-54.
https://doi.org/10.1016/j.jterra.2017.04.002
[30] Roshanianfard, A., Noguchi, N., Okamoto, H., & Ishii, K. (2020). A review of autonomous agricultural vehicles (The experience of Hokkaido University). Journal of Terramechanics, 91(1), 155-183.
[32] Schreiber, M., & Kutzbach, H. D. (2008). Influence of soil and tire parameters on traction. Research in Agricultural Engineering, 54(2), 43-49.
[33] Serban, R., Negrut, D., Recuero, A., & Jayakumar, P. (2019). An integrated framework for high-performance, high-fidelity simulation of ground vehicle-tyre-terrain interaction.
International journal of vehicle performance, 5(3), 233-259.
https://doi.org/10.1504/IJVP.2019.100698
[34] Srivastava, A. K., Goering, C. E., Rohrbach, R. P., & Buckmaster, D. R. (1993). Engineering principles of agricultural machines.
[35] Taheri, S., Sandu, C., Taheri, S., Pinto, E., & Gorsich, D. (2015). A technical survey on Terramechanics models for tire–terrain interaction used in modeling and simulation of wheeled vehicles.
Journal of Terramechanics, 57(1), 1-22.
https://doi.org/10.1016/j.jterra.2014.08.003
[36] Tarighi, J., Khodkam, H., & Ghorbani, A. (2024). A review of optimizing biogas production through pretreatment and pollution reduction. Journal of Renewable and New Energy, 11(2), 203-213.10.22034/jrenew 2024.200573
[37] Wong, J. Y., & Reece, A. R. (1967). Prediction of rigid wheel performance based on the analysis of soil-wheel stresses, part I. Performance of driven rigid wheels.
Journal of Terramechanics, 4(1), 81-98.
https://doi.org/10.1016/0022-4898(67)90105-X
[38] Zakari, A., & Oluwaseyi Musibau, H. (2024). Sustainable economic development in OECD countries: Does energy security matter?. Sustainable Development, 32(1), 1337-1353. https://doi.org/10.1002/sd.2668