[1] Ahmadbeyki, A., Ghahderijani, M., Borghaee, A., & Bakhoda, H. (2023). Energy use and environmental 1. A governmental program to manage electricity in Iran. impacts analysis of greenhouse crops production using life cycle assessment approach: A case study of cucumber and tomato from Tehran province, Iran. Energy Reports, 9, 988-999.
[2] Alamdari, P., Nematollahi, O., & Alemrajabi, A. (2013). Solar energy potentials in Iran: A review. Renewable and Sustainable Energy Reviews, 21, 778-788.
[3] Ali, Q., M., R., Tariq, M., & Khan, I. (2019). Energy budgeting and greenhouse gas emission in cucumber under tunnel farming in Punjab, Pakistan. Scientia Horticulturae, 250, 168-173. [4] Anonymous. (2024). Exclusion of industries from load management programs. TAVANIR.
[5] Aravindan, M., & Kumar, G. (2023). Hydrogen towards sustainable transition: a review of production, economic, environmental impact, and scaling factors. Results Engineering, 20.
[6] Azadi, H., Houshyar, E., Zarafshani, K., G., H., & Witlox, F. (2013). Agricultural outsourcing: a two-headed coin. Global and Planetary Change, 1000, 20-27.
[7] Baruah, D. C., G.C., G., & Bora, C. (2008). Energy demand forecast for mechanized agriculture in rural India. Energy Policy, 36, 2628-2636.
[8] Freedman, B. (2018). Chapter 12: Resources and Sustainable Development. In Environmental Science: a Canadian perspective.
[9] Gagnon, L. (2008). Civilisation and energy payback. Energy Policy, 36, 3317-3322.
[10] Ghaffarpour, Z., Fakhroleslam, M., & Amidpour, M. (2024). Calculation of energy consumption, tomato yield, and electricity generation in a PV-integrated greenhouse with different solar panel configurations. Renewable Energy, 229, 120723. https://doi.org/https:// doi.org/10.1016/j.renene.2024.120723
[11] Ghasemimobtaker, H., Keyhani, A., Mohammadi, A., Rafiee, S., & Akram, A. (2010). Sensitivity analysis of energy inputs for barley production in Hamedan province of Iran. Agriculture, Ecosystems and Environment, 137, 367-372.
[12] Gong, L., Yu, M., & Kollias, S. (2023). Optimizing Crop Yield and Reducing Energy Consumption in Greenhouse Control Using PSO-MPC Algorithm. Algorithms, 16(243), 11.
[13] Hesampour, R., Taki, M., Fathi, R., Hassani, M., & Halog, A. (2022). Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Science of the Total Environment, 828, 17.
[14] Kaur, A., Sonawane, V., & Rosha, P. (2024). Energy efficiency optimization strategies for greenhouse-based crop cultivation: A review.
The Canadian Journal of Chemical Engineering, 102(3), 1051-1065.
https://doi.org/https://doi.org/10.1002/cjce.25131.
[15] Khessro, M. K., Hilal, Y. Y., Al-Jawadi, R. A., & AlIrhayim, M. N. (2022). Greenhouse energy analysis and neural networks modelling in Northern Iraq. Acta Technologica Agriculturae, 4, 205-210.
[16] Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., & Clark, S. (2013). Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. Journal of Cleaner Production, 73, 183-192.
[17] Lak, M., & Almasi, M. (2011). An analytical review of parameters and indices affecting decision-making in agricultural mechanization. Australian Journal of Agricultural Engineering, 2(5), 140-146.
[18] Mandal, K. G., Saha, K. P., Gosh, P. L., Hati, K. M., & Bandyopadhyay, K. K. (2002). Bioenergy and economic analysis of soybean-based crop production systems in central India. Biomass Bioenergy, 23, 337-345. [19] Mohammadi, A., & Omid, M. (2010). Economic analysis and the relation between energy inputs and yield of greenhouse cucumber production in Iran. Applied Energy, 87, 191-196.
[20] Morovat, H., Faridzad, A., & Lowni, S. (2019). Estimating the Elasticity of Electricity Demand in Iran: A Sectoral-Province Approach. Iranian Economic Review, 23(4), 861-881.
[21] Ortiz, O., Orrego, R., Pradel, W., Gildemacher, P., Castillo, R., Otiniano, R., Gabriel, J., Vallejo, J., Torres, O., Woldegiorgis, G., Damene, B., Kakuhenzire, R., I., K., & Kahiu, I. (20013). Insights into potato innovation systems in Bolivia, Ethiopia, Peru and Uganda. Agricultural Systems, 114, 73-83.
[22] Ozkan, B., Fert, C., & C.F., K. (2007). Energy and cost analysis for greenhouse and open-field grape production. Energy, 32(8), 1500-1504.
[23] Rahimi Ajdadi, F., & Abbaspour-Gilandeh, A. (2011). Artificial neural network and stepwise multiple range regression methods for the prediction of tractor fuel consumption. Measurement, 44, 2104-2111.
[24] Rashidi, K., Azizpanah, A., Fathi, R., & Taki, M. (2024). Efficiency and sustainability: Evaluating and optimizing energy use and environmental impact in cucumber production. Environmental and Sustainability Indicators, 22, 12.
[25] Rizwan, A., Khan, A. N., Ahmad, R., & Kim, D. H. (2023). Optimal Environment Control Mechanism Based on OCF Connectivity for Efficient Energy Consumption in Greenhouse.
IEEE Internet of Things Journal, 10(6), 5035-5049.
https://doi.org/10.1109/JIOT.2022.3222086
[26] Saadi, H., Behnia, M., Taki, M., & Kaab, A. (2025). A comparative study on energy use and environmental impacts in various greenhouse models for vegetable cultivation. Environmental and Sustainability Indicators, 25, 15.
[27] Shadidi, M., Nayerifard, T., & Lak, M. (2024). Prospects of renewable energy in the agricultural sector of Iran: a roadmap for a sustainable future. International Journal of Ambient Energy, 46(1), 15.
[28] Taki, M., & Yildizhan, H. (2018). Evaluation of the sustainable energy applications for fruit and vegetable production processes; case study: greenhouse cucumber production. Journal of Cleaner Production, 199164-172.
[29] Timonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate.
Journal of Cleaner Production, 235, 1567-1579.
https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.085
[30] Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top top-emitting countries. Geoscience Frontiers, 15, 15.
[31] Yakub, A. O., Adesanya, M. A., Same, N. N., Rabiu, A., Chaulagain, D., Ogunlowo, Q. O., Owolabi, A. B., Park, J., Lim, J. O., Lee, H. W., & Huh, J. S. (2024). Enhancing sustainable and climate-resilient agriculture: Optimization of greenhouse energy consumption through microgrid systems utilizing advanced meta-heuristic algorithms. Energy Strategy Reviews, 54, 18.
[32] Yilmaz, I., Akcaoz, H., & Ozkan, B. (2004). An analysis of energy use and input costs of cotton production in Turkey. New Medit, 2, 7.