[1] Alexandre, V.M.F., de Castro, T.M.S., de Araújo, L. V., Santiago, V.M.J., Freire, D.M.G., Cammarota, M.C., 2016. Minimizing solid wastes in an activated sludge system treating oil refinery wastewater. Chem. Eng. Process. Process Intensif. 103, 53-62. https://doi. org/10.1016/J.CEP.2015.10.021
[2] Amin, F.R., Khalid, H., Zhang, H., Rahman, S., Zhang, R., Liu, G., Chen, C., 2017. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7, 1-12.
https://doi.org/10.1186/S13568-017-0375-4/TABLES/2
[3] Amin, M.A., Shukor, H., Yin, L.S., Kasim, F.H., Shoparwe, N.F., Makhtar, M.M.Z., Yaser, A.Z., 2022. Methane Biogas Production in Malaysia: Challenge and Future Plan. Int. J. Chem. Eng. https://doi. org/10.1155/2022/2278211
[4] Asaithambi, P., Yesuf, M.B., Govindarajan, R., Hariharan, N.M., Thangavelu, P., Alemayehu, E., 2022. A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater. Int. J. Chem. Eng. https://doi.org/10.1155/2022/1105376
[5] Athanasoulia, E., Melidis, P., Aivasidis, A., 2014. Codigestion of sewage sludge and crude glycerol from biodiesel production. Renew. Energy 62, 73-78. https:// doi.org/10.1016/J.RENENE.2013.06.040
[6] Cai, Y., Zheng, Z., Wei, L., Zhang, H., Wang, X., 2022. The characteristics of multi-substrates (low and high C/N) anaerobic digestion: focus on energy recovery and the succession of methanogenic pathway. Bioresour. Technol. 343.
https://doi.org/10.1016/J.BIORTECH.2021.125976
[7] Comesaña, D.A., Comesaña, I.V., Iglesia, S.M. de la, 2018. Municipal Sewage Sludge Variability: Biodegradation through Composting with Bulking Agent. Sewage.
https://doi.org/10.5772/INTECHOPEN.75130
[8] Elsayed, M., Andres, Y., Blel, W., Gad, A., Ahmed, A., 2016. Effect of VS organic loads and buckwheat husk on methane production by anaerobic co-digestion of primary sludge and wheat straw. Energy Convers. Manag. 117, 538-547.
[9] Federation, W.E., 1999. Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater. Public Health 51, 940-940. https://doi.org/10.2105/AJPH.51.6.940-a
[10] Gadow, S.I., Estrada, A.L., Li, Y.Y., 2022. Characterization and potential of two different anaerobic mixed microflora for bioenergy recovery and decolorization of textile wastewater: Effect of C/N ratio, dye concentration and pH. Bioresour. Technol. Reports 17.
https://doi.org/10.1016/J.BITEB.2021.100886
[11] Hagos, K., Zong, J., Li, D., Liu, C., Lu, X., 2017. Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew. Sustain. Energy Rev. 76, 1485-1496.
https://doi.org/10.1016/J.RSER.2016.11.184
[12] Janke, L., Weinrich, S., Leite, A.F., Terzariol, F.K., Nikolausz, M., Nelles, M., Stinner, W., 2017. Improving anaerobic digestion of sugarcane straw for methane production: Combined benefits of mechanical and sodium hydroxide pretreatment for process designing. Energy Convers. Manag. 141, 378-389. https://doi.org/10.1016/J.ENCONMAN.2016.09.083
[13] Kang, X., Zhang, Y., Li, L., Sun, Y., Kong, X., Yuan, Z., 2020. Enhanced methane production from anaerobic digestion of hybrid Pennisetum by selectively removing lignin with sodium chlorite. Bioresour. Technol. 295, 122289.
https://doi.org/10.1016/J. BIORTECH.2019.122289
[14] Li, Yangyang, Xu, F., Li, Yu, Lu, J., Li, S., Shah, A., Zhang, X., Zhang, H., Gong, X., Li, G., 2018. Reactor performance and energy analysis of solid- state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag. 73, 130-139. https://doi. org/10.1016/J.WASMAN.2017.11.041
[15] Maragkaki, A.E., Fountoulakis, M., Gypakis, A., Kyriakou, A., Lasaridi, K., Manios, T., 2017. Pilot-scale anaerobic co-digestion of sewage sludge with agroindustrial by-products for increased biogas production of existing digesters at wastewater treatment plants. Waste Manag. 59, 362-370.
https://doi.org/10.1016/J. WASMAN.2016.10.043
[16] Matheri, A.N., Ndiweni, S.N., Belaid, M., Muzenda, E., Hubert, R., 2017. Optimising biogas production from anaerobic co-digestion of chicken manure and organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 80, 756-764.
https://doi.org/10.1016/J. RSER.2017.05.068
[17] Montgomery, D.C., 2020. Design and Analysis of Experiments, 10th Edition, Wiley. Wiley 1-682.
[18] Moodley, P., Kana, E.B.G., 2015. Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int. J. Hydrogen Energy 40, 3859-3867. https://doi.org/10.1016/J.IJHYDENE.2015.01.087
[19] Mu, L., Zhang, L., Zhu, K., Ma, J., Ifran, M., Li, A., 2020. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 704, 135429.
https://doi.org/10.1016/J.SCITOTENV.2019.135429
[20] Pellera, F.M., Gidarakos, E., 2017. Anaerobic digestion of solid agroindustrial waste in semi-continuous mode: Evaluation of mono-digestion and co-digestion systems. Waste Manag. 68, 103-119.
https://doi.org/10.1016/J. WASMAN.2017.06.026
[21] Raheem, A., Sikarwar, V.S., He, J., Dastyar, W., Dionysiou, D.D., Wang, W., Zhao, M., 2018. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 337, 616-641.
https://doi.org/10.1016/J.CEJ.2017.12.149
[23] Rasouli, M., Babaei, H., Environmental, B. Ataeiyan, 2023. The effect of lignocellulosic waste on treatment of municipal wastewater in anaerobic digestion process. icevirtuallibrary.com, Journal of Environ. Eng. 18, 61-69.
https://doi.org/10.1680/jenes.22.00060
[24] Rasouli, M., Dini, M., Ataeiyan, B., 2022. Anaerobic codigestion of sewage sludge and Cladophora green algae: Investigation of synergistic effects and Optimization of substrate composition ratio. Environ. Eng. Res. https://doi.org/10.4491/EER.2021.516
[25] Serna-García, R., Zamorano-López, N., Seco, A., Bouzas, A., 2020. Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): Methane potential and microbial diversity. Bioresour. Technol. 298, 122521. https://doi. org/10.1016/J.BIORTECH.2019.122521
[26] Siddiqui, M.A.H., Pal, S.K., Dewangan, N., Chattopadhyaya, S., Sharma, S., Nekoonam, S., Issakhov, A., 2021. Sludge Formation Analysis in Hydraulic Oil of Load Haul Dumper 811MK v Machine Running at Elevated Temperatures for Bioenergy Applications. Int. J. Chem. Eng.
https://doi.org/10.1155/2021/4331809
[27] Sitthikitpanya, N., Sittijunda, S., Khamtib, S., Reungsang, A., 2021. Co-generation of biohydrogen and biochemicals from co-digestion of Chlorella sp. biomass hydrolysate with sugarcane leaf hydrolysate in an integrated circular biorefinery concept. Biotechnol. Biofuels 14, 1-16.
https://doi.org/10.1186/S13068-021-02041-6/FIGURES/6
[28] Smithers, J., 2014. Review of sugarcane trash recovery systems for energy cogeneration in South Africa. Renew. Sustain. Energy Rev. 32, 915-925. https://doi.org/10.1016/j.rser.2014.01.042
[29] Solé-Bundó, M., Garfí, M., Matamoros, V., Ferrer, I., 2019. Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Sci. Total Environ. 660, 974-981. https://doi.org/10.1016/J.SCITOTENV.2019.01.011
[30] Sugarcane Land & Water Food and Agriculture Organization of the United Nations Land & Water Food and Agriculture Organization of the United Nations [WWW Document], n.d. URL https://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/(accessed 7.5.23).
[31] Sun, C., Guo, L., Zheng, Y., Yu, D., Jin, C., Zhao, Y., Yao, Z., Gao, M., She, Z., 2022. Effect of mixed primary and secondary sludge for two-stage anaerobic digestion (AD). Bioresour. Technol. 343.
https://doi.org/10.1016/J.BIORTECH.2021.126160
[32] Tahwia, A.M., Hamido, M.A., Elemam, W.E., 2023. Using mixture design method for developing and optimizing eco-friendly ultra-high performance concrete characteristics. Case Stud. Constr. Mater. 18, e01807.
https://doi.org/10.1016/J.CSCM.2022.E01807
[33] Villamil, J.A., Mohedano, A.F., San Martín, J., Rodriguez, J.J., de la Rubia, M.A., 2020. Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renew. Energy, 146, 435-443.
https://doi.org/10.1016/j.renene.2019.06.138
[34] Wang, R., Lin, K., Ren, D., Peng, P., Zhao, Z., Yin, Q., Gao, P., 2022. Energy conversion performance in co-hydrothermal carbonization of sewage sludge and pinewood sawdust coupling with anaerobic digestion of the produced wastewater. Sci. Total Environ. 803. https:// doi.org/10.1016/J.SCITOTENV.2021.149964
[35] Wei, Y., Van Houten, R.T., Borger, A.R., Eikelboom, D.H., Fan, Y., 2003. Minimization of excess sludge production for biological wastewater treatment. Water Res., 37, 4453-4467. https://doi.org/10.1016/S0043-1354(03)00441-X
[36] Xie, S., Wickham, R., Nghiem, L.D., 2017. Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. Int. Biodeterior. Biodegradation 116, 191-197.
https://doi.org/10.1016/J.IBIOD.2016.10.037
[37] Yaser, A.Z., Lamaming, J., Suali, E., Rajin, M., Saalah, S., Kamin, Z., Safie, N.N., Aji, N.A.S., Wid, N., 2022. Composting and Anaerobic Digestion of Food Waste and Sewage Sludge for Campus Sustainability: A Review. Int. J. Chem. Eng. https://doi.org/10.1155/2022/6455889